Wrinkling Measurement of the Mechanical Properties of Drying Salt Thin Films.
نویسندگان
چکیده
We report a time-resolved approach to probe the mechanical properties of thin films during drying and solidification based on surface wrinkling. The approach is demonstrated by measuring the modulus of a ternary system comprising an inorganic salt (aluminum chlorohydrate), a humectant (glycerol), and water across the glassy film formation pathway. The topography of mechanically induced wrinkling of supported films on polydimethylsiloxane (PDMS) is experimentally monitored during mechanical extension and relaxation cycles. Nontrivial aspects of our method include the need to oxidize the (hydrophobic) PDMS surface prior to solution deposition to enable surface wetting, which simultaneously creates a glassy-layer skin, whose wrinkling can contribute to the overall topography. Film drying is studied as a function of solution concentration and time, and a range of pattern morphologies are found: sinusoidal wrinkling, transient double-wavelength wrinkling accompanying film "crust" formation, ridging associated with stress localization, and cracking. We quantify the evolution of the elastic modulus during the sinusoidal wrinkling stage, employing bi- and trilayer models, which are independently confirmed by nanoindentation. The method provides thus a simple and robust approach for the mechanical characterization of out-of-equilibrium thin films.
منابع مشابه
Atomic Simulation of Temperature Effect on the Mechanical Properties of Thin Films
The molecular dynamic technique was used to simulate the nano-indentation test on the thin films of silver, titanium, aluminum and copper which were coated on the silicone substrate. The mechanical properties of the selected thin films were studied in terms of the temperature. The temperature was changed from 193 K to 793 K with an increment of 100 K. To investigate the effect of temperature on...
متن کاملWrinkling of a charged elastic film on a viscous layer
A thin metallic film deposited on a compliant polymeric substrate begins to wrinkle under compression induced in curing process and afterwards cooling of the system. The wrinkle mode depends upon the thin film elasticity, thickness, compressive strain, as well as mechanical properties of the compliant substrate. This paper presents a simple model to study the modulation of the wrinkle mode of t...
متن کاملInvestigation of the mechanical properties of various yttria stabilized zirconia based thin films prepared by aqueous tape casting
In this study various yttria doped zirconia based thin films were prepared by the aqueous tape casting method. The rheological property of the paste was studies. The phase content and microstructure of the samples was investigated by X-ray diffraction and scanning electron microscope, respectively. The mechanical properties of thin films were studied by Vickers microhardness and nanoindentatio...
متن کاملMechanical Properties and Microstructural Evolution of Ta/TaNx Double Layer Thin Films Deposited by Magnetron Sputtering
Crystalline tantalum thin films of about 500nm thickness were deposited on AISI 316L stainless steel substrate using magnetron sputtering. To investigate the nano-mechanical properties of tantalum films, deposition was performed at two temperatures (25°C and 200°C) on TaNx intermediate layer with different N2/Ar flow rate ratio from 0 to 30%. Nano-indentation was performed to obtain the mechani...
متن کاملThe Effect of Normal Anisotropy on Thin-Walled Tube Bending
Thin-walled tube bending has common applications in the automobile and aerospace industries. The rotary-draw-bending method is a complex physical process with multi-factor interactive effects and is one of the advanced tube forming processes with high efficiency, high forming precision, low consumption and good flexibility for bending angle changes. However, it may cause a wrinkling phenomenon,...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Langmuir : the ACS journal of surfaces and colloids
دوره 32 9 شماره
صفحات -
تاریخ انتشار 2016